Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Designing a Next Generation Trailer Braking System

2021-10-11
2021-01-1268
Passenger vehicles have made astounding technological leaps in recent years. Unfortunately, little of that progress has trickled down to other segments of the transportation industry leaving opportunities for massive gains in safety and performance. In particular, the electric drum brakes on most consumer trailers differ little from those on trailers over 70 years ago. Careful examination of current production passenger vehicle hardware and trailering provided the opportunity to produce a design and test vehicle for a plausible, practical, and performant trailer braking system for the future. This study equips the trailer with high control frequency antilock braking and dynamic torque distribution through use of passenger vehicle grade apply hardware.
Technical Paper

Crash-induced Loads in Liftgate Latching Systems

2018-04-03
2018-01-1333
Automotive liftgate latches have been subject to regulation for minimum strength and inertial resistance requirements since the late 1990’s in the US and globally since the early 2000’s, possibly due to liftgate ejections stemming from the first generation Chrysler minivans which employed latches that were not originally designed with this hazard in mind. Side door latches have been regulated since the 1960’s, and the regulation of liftgate, or back door latches, have been based largely on side door requirements, with the exception of the orthogonal test requirement that is liftgate specific. Based on benchmarking tests of liftgate latches, most global OEM’s design their latches to exceed the minimum regulatory requirements. Presumably, this is based on the need to keep doors closed during crashes and specifically to do so when subjected to industry standard tests.
Journal Article

Real World NOx Sensor Accuracy Assessment and Implications for REAL NOx Tracking

2021-04-06
2021-01-0593
The REAL NOx regulation requires tracking and reporting of NOx emissions starting in 2022MY for both medium-duty and heavy-duty diesel vehicles with potential to be considered during the next light-duty rulemaking. The regulation includes minimum NOx mass measurement accuracy requirements of either +/−20 percent or +/− 0.1 g/bhp-hr. Existing NOx sensor technology may not be able to meet the regulated accuracy requirements especially when exposed to other sources of variation within the emissions control system. This paper provides an assessment of real-world NOx sensor accuracy and the impact of other sources of variation and noise factors on NOx measurement accuracy. Noise factors investigated include NOx sensor tolerance, exhaust flow rate estimation, NOx sensor ammonia (NH3) cross sensitivity, mass air flow (MAF) sensor accuracy, NOx sensor placement, and laboratory emissions measurement capability.
Journal Article

Field Data Study of the Effect of Knee Airbags on Lower Extremity Injury in Frontal Crashes

2021-04-06
2021-01-0913
Knee airbags (KABs) are one countermeasure in newer vehicles that could influence lower extremity (LEX) injury, the most frequently injured body region in frontal crashes. To determine the effect of KABs on LEX injury for drivers in frontal crashes, the analysis examined moderate or greater LEX injury (AIS 2+) in two datasets. Logistic regression considered six main effect factors (KAB deployment, BMI, age, sex, belt status, driver compartment intrusion). Eighty-five cases with KAB deployment from the Crash Injury Research and Engineering Network (CIREN) database were supplemented with 8 cases from the International Center for Automotive Medicine (ICAM) database and compared to 289 CIREN non-KAB cases. All cases evaluated drivers in frontal impacts (11 to 1 o’clock Principal Direction of Force) with known belt use in 2004 and newer model year vehicles. Results of the CIREN/ICAM dataset were compared to analysis of a similar dataset from NASS-CDS (5441 total cases, 418 KAB-deployed).
Technical Paper

Analysis of the Event Data Recorder (EDR) Function of a GM Active Safety Control Module (EOCM3 LC)

2024-04-09
2024-01-2888
The Advanced Driver Assistance System (ADAS) is a comprehensive feature set designed to aid a driver in avoiding or reducing the severity of collisions while operating the vehicle within specified conditions. In General Motors (GM) vehicles, the primary controller for the ADAS is the Active Safety Control Module (ASCM). In the 2013 model year, GM introduced an ASCM utilizing the GM internal nomenclature of External Object Calculation Module (EOCM) in some of their vehicles produced for the North American market. Similar to the Sensing and Diagnostic Module (SDM) utilized in the restraints system, the EOCM3 LC contains an Event Data Recorder (EDR) function to capture and record information surrounding certain ADAS or Supplemental Inflatable Restraint (SIR) events. The ASCM EDR contains information from external object sensors, various chassis and powertrain control modules, and internally calculated data.
Technical Paper

Robust Adaptive Control for Dual Fuel Injection Systems in Gasoline Engines

2024-04-09
2024-01-2841
The paper presents a robust adaptive control technique for precise regulation of a port fuel injection + direct injection (PFI+DI) system, a dual fuel injection configuration adopted in modern gasoline engines to boost performance, fuel efficiency, and emission reduction. Addressing parametric uncertainties on the actuators, inherent in complex fuel injection systems, the proposed approach utilizes an indirect model reference adaptive control scheme. To accommodate the increased control complexity in PFI+DI and the presence of additional uncertainties, a nonlinear plant model is employed, incorporating dynamics of the exhaust burned gas fraction. The primary objective is to optimize engine performance while minimizing fuel consumption and emissions in the presence of uncertainties. Stability and tracking performance of the adaptive controller are evaluated to ensure safe and reliable system operation under various conditions.
Technical Paper

Ground Plane Interactions in Electromagnetic Compatibility Component Testing

2022-03-29
2022-01-0130
The automotive industry has increased reliance on electronics technology and wireless communication systems and the demand for these systems is still increasing. With this demand there is a need to ensure these systems do not interfere with each other in a way which may cause system performance degradation or even failure. Electromagnetic compatibility (EMC) is a discipline that deals with interaction between electronic and wireless systems. During EMC testing the device under test (DUT) is isolated from the surrounding environment to facilitate measurement of the component’s electromagnetic characteristics. Geometric aspects of an EMC test setup may impact test results without the knowledge of the test engineer. In this paper, electromagnetic simulation and measurement results will show the impact of one of the least obvious but most often experienced issues in an EMC setup - grounding.
Technical Paper

Technical Challenges with on Board Monitoring

2024-04-09
2024-01-2597
The proposed Euro 7 regulation includes On Board Monitoring, or OBM, to continuously monitor vehicles for emission exceedances. OBM relies on feedback from existing or additional sensors to identify high emitting vehicles, which poses many challenges. Currently, sensors are not commercially available for all emissions constituents, and the accuracy of available sensors is not capable enough for in use compliance determination. On board emissions models do not offer enough fidelity to determine in use compliance and require new complex model innovation development which will be extremely complicated to implement on board the vehicle. The stack up of multi-component deterioration leading to an emissions exceedance is infeasible to detect using available sensors and models.
Technical Paper

Advanced Engine Cooling System for a Gas-Engine Vehicle Part I: A New Coolant Flow Control During Cold Start

2024-04-09
2024-01-2414
In this paper, we present a novel algorithm designed to accurately trigger the engine coolant flow at the optimal moment, thereby safeguarding gas-engines from catastrophic failures such as engine boil. To achieve this objective, we derive models for crucial temperatures within a gas-engine, including the engine combustion wall temperature, engine coolant-out temperature, engine block temperature, and engine oil temperature. To overcome the challenge of measuring hard-to-measure signals such as engine combustion gas temperature, we propose the use of new intermediate parameters. Our approach utilizes a lumped parameter concept with a mean-value approach, enabling precise temperature prediction and rapid simulation. The proposed engine thermal model is capable of estimating temperatures under various conditions, including steady-state or transient engine performance, without the need for extra sensors.
Technical Paper

Kinetic Model Development for Selective Catalytic Converter Integrated Particulate Filters

2024-04-09
2024-01-2631
To meet the stringent NOx and particulate emissions requirements of Euro 6 and China 6 standard, Selective Catalyst Reduction (SCR) catalyst integrated with wall flow particulate filter (SCR-DPF) has been found to be an effective solution for the exhaust aftertreatment systems of diesel engines. NOx is reduced by ammonia generated from urea injection while the filter effectively traps and burns the particulate matter periodically in a process called regeneration. The engine control unit (ECU) effectively manages urea injection quantity, timing and soot burning frequency for the stable functioning of the SCR-DPF without impacting drivability. To control the NOx reduction and particulate regeneration process, the control unit uses lookup tables generated from extensive hardware testing to get the current soot load and NOx slip information of SCR-DPF as a function of main exhaust state variables.
Technical Paper

Advanced Material Characterization of Hood Insulator Foams for Pedestrian Head Impact

2024-04-09
2024-01-2682
Hood insulators are widely used in automotive industry to improve noise insulation, pedestrian impact protection and to provide aesthetic appeal. They are attached below the hood panel and are often complex in shape and size. Pedestrian head impacts are highly dynamic events with a compressive strain rate experienced by the insulator exceeding 300/s. The energy generated by the impact is partly absorbed by the hood insulators thus reducing the head injury to the pedestrian. During this process, the insulator experiences multi-axial stress states. The insulators are usually made of soft multi-layered materials, such as polyurethane or fiberglass, and have a thin scrim layer on either side. These materials are foamed to their nominal thickness and are compression molded to take the required shape of the hood. During this process they undergo thickness reduction, thereby increasing their density.
Technical Paper

Biomechanical and Scaling Basis for Frontal and Side Impact Injury Assessment Reference Values

2016-11-07
2016-22-0018
In 1983, General Motors Corporation (GM) petitioned the National Highway Traffic Safety Administration (NHTSA) to allow the use of the biofidelic Hybrid III midsize adult male dummy as an alternate test device for FMVSS 208 compliance testing of frontal impact, passive restraint systems. To support their petition, GM made public to the international automotive community the limit values that they imposed on the Hybrid III measurements, which were called Injury Assessment Reference Values (IARVs). During the past 20 years, these IARVs have been updated based on relevant biomechanical studies that have been published and scaled to provide IARVs for the Hybrid III and CRABI families of frontal impact dummies. Limit values have also been developed for the biofidelic side impact dummies, BioSID, ES-2 and SID-IIs.
Journal Article

A Process to Characterize the Sound Directivity Pattern of AVAS Speaker

2023-05-08
2023-01-1095
Speaker performance in Acoustic Vehicle Alerting System (AVAS) plays a crucial role for pedestrian safety. Sound radiation from AVAS speaker has obvious directivity pattern. Considering this feature is critical for accurately simulating the exterior sound field of electrical vehicles. This paper proposes a new process to characterize the sound directivity pattern of AVAS speaker. The first step of the process is to perform an acoustic testing to measure the sound pressure radiated from the speaker at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual speaker, the locations of each microphone and measured sound pressure data, an inverse method, namely the inverse pellicular analysis, is adopted to recover a set of vibration pattern of the virtual speaker surface. The recovered surface vibration pattern can then be incorporated in the full vehicle numerical model as an excitation for simulating the exterior sound field.
Technical Paper

Correlation of Detailed Hydrocarbon Analysis with Simulated Distillation of US Market Gasoline Samples and its Effect on the PEI-SimDis Equation of Calculated Vehicle Particulate Emissions

2023-04-11
2023-01-0298
Several predictive equations based on the chemical composition of gasoline have been shown to estimate the particulate emissions of light-duty, internal combustion engine (ICE) powered vehicles and are reviewed in this paper. Improvements to one of them, the PEISimDis equation are detailed herein. The PEISimDis predictive equation was developed by General Motor’s researchers in 2022 based on two laboratory gas chromatography (GC) analyses; Simulated Distillation (SimDis), ASTM D7096 and Detailed Hydrocarbon Analysis (DHA), ASTM D6730. The DHA method is a gas chromatography mass spectroscopy (GC/MS) methodology and provides the detailed speciation of the hundreds of hydrocarbon species within gasoline. A DHA’s aromatic species from carbon group seven through ten plus (C7 – C10+) can be used to calculate a Particulate Evaluation Index (PEI) of a gasoline, however this technique takes many hours to derive because of its long chromatography analysis time.
Technical Paper

Update on Gasoline Fuel Property and Gasoline Additives Impacts on Stochastic Preignition with Review of Global Market Gasoline Quality

2022-08-30
2022-01-1071
Stochastic Preignition (SPI) is an abnormal combustion phenomenon for internal combustion engines (ICE), which has been a significant impact to automotive companies developing high efficiency, turbocharged, direct fuel injection, spark ignited engines. It is becoming clearer what fuel properties are related to the cause of SPI, whether directly with fuel preparation in the cylinder, or mechanisms related to the deposit build-up which contributes to initial and follow-on SPI events. The purpose of this paper is to provide a summary of global market gasoline fuel properties with special attention given to properties and specific compounds from the fuel and fuel additives that can contribute to SPI and the deposit build-up in engines. Based on a review of the global fuel quality, it appears that the fuel quality has not caught up to meet the technology requirements for fuel economy from modern technology engines.
X